Боязнь изменчивости среды является признаком

Что такое фенотип и чем он отличается от генотипа?

Совокупность всех генов, являющихся наследственной основой организма, называют генотипом. Морфологические, анатомические, функциональные признаки организма (их совокупность) составляют фенотип. Фенотип организма может изменяться на протяжении его жизни, при этом его генотип остается неизменным. Он формируется под влиянием генотипа и условий среды.

Что такое фенотип?

Итак, фенотип — это любые физические свойства и характеристики организма, поддающиеся наблюдению, а также биохимические, физические, физиологические (т.е. измеряемые) и различные характеристики индивидуума. Этот термин можно отнести к абсолютно любым поведенческим, морфологическим, физиологическим, биохимическим характеристикам организмов.

В процессе онтогенеза (индивидуального развития) формируются внешние и внутренние признаки организма. Так вот, их совокупность и является фенотипом.

Неопределенность концепции

Некоторые неопределённости имеются в концепции фенотипа. В большинстве своем молекулы и структуры, частью фенотипа хоти и являются, но при этом во внешнем виде организма незаметны. Группы крови человека как раз таки характеризуют данную неопределенность. Именно потому характеристики, обнаруживаемые медицинскими, техническими, или диагностическими процедурами должны составлять расширенное определение этого термина.

Поведение, приобретенное в процессе жизни или даже влияние организма на другие организмы и на окружающую среду, в дальнейшем, могут составить основу радикального расширения. Например, фенотипом генов бобра, согласно Докинзу Ричарду, можно считать резцы бобров, а также их плотину.

Основу эволюции составляет многообразие различных фенотипов. Факторы, от которых зависит их разнообразие, генотип (генетическая программа), мутации-частота случайных изменений и условия среды приведены в такой зависимости:

фенотип = 1) генотип + 2) внешняя среда + 3) случайные изменения

В разных условиях фенотипы иногда сильно различаются. К примеру, на открытом пространстве — развесистые, а в лесу при этом стройные и высокие. Выделим список признаков, которые определяются клинически и являются фенотипическими:

  1. форма волос
  2. масса тела
  3. рост
  4. цвет глаз
  5. группы крови

Фенотип выявляется в процессе онтогенеза в данных условиях в результате взаимодействия генотипа и факторов внешней и внутренней среды. В общем случае это то, что можно услышать, ощутить, увидеть (окрас собаки) и поведение животного.

У каждого биологического вида можно заметить фенотип, свойственный только ему, который формируется согласно заложенной в генах наследственной информации. При изменении внешней среды возникает изменчивость — индивидуальные различия. Это происходит из-за того, что от организма к организму состояние признаков колеблется. Фундаментом для генетического разнообразия форм служит изменчивость. Различают фенотипическую и или генетическую изменчивость, а также модификационную или мутационную.

Модификационная изменчивость изменений генотипа не вызывает, она лишь показывает максимальные возможности организма, которому присущ данный генотип. Характеристиками модификационной изменчивости являются количественные и качественные отклонения от исходной нормы, не передающиеся по наследству, а имеющие всего лишь характер приспособительного толка. К примеру, изменение цвета кожи человека из-за воздействия на нее солнечного света или развитие мускулатуры благодаря физическим нагрузкам и т. д.

Норма реакции-это термин, который обозначает в каких пределах варьируется модификационная изменчивость. Итак, мы уяснили, что в результате взаимодействия генотипа и факторов среды формируется фенотип. К потомкам фенотипические признаки от родителей не передаются, а передается наследуется только норма реакции, т. е. характер реагирования на изменение окружающих условий.

Что такое генотип?

Генофонд характеризует вид, а генотип представляет собой совокупность генов данного организма, характеризующая вид. Процесс определения генотипа называется генотипированием. Как уже говорилось выше, генотип совместно с факторами внешней среды определяет фенотип организма. Особи, отличающиеся генотипом, могут иметь один и тот же фенотип. При этом отличаться друг от друга в различных условиях могут и особи с одинаковым фенотипом.

Генетическая изменчивость бывает комбинативной и мутационной. Первый случай является результатом обмена гомологичными участками гомологичных хромосом в процессе мейоза, приводящее впоследствии к образованию в генотипе новых объединений генов. Возникает в результате трех процессов:

  • случайного соединения их при оплодотворении;
  • независимого расхождения хромосом в процессе мейоза;
  • обмена участками гомологичных хромосом или конъюгации.

Мутационная изменчивость

При скачкообразном и устойчивом изменении генов (единиц наследственности) происходят изменения наследственных признаков. Такого рода изменения называются мутациями. Они самым непосредственным образом влияют на изменения генотипа, которые в дальнейшем передаются потомкам. Мутации не связаны рекомбинацией и скрещиванием генов. Различают 2 типа мутаций- генные и хромосомные.

Научно доказано, что люди отличаются между собой по фенотипу и генотипу.

Люди друг от друга сильно отличаются, хотя и являются представителями одного биологического вида. В природе не существует двух одинаковых людей, т. к. фенотип и генотип каждого из них индивидуален. Адаптация людей к климато-географическим факторам — первое отличие людей по фено- и генотипическим особенностям. Другим отличием является фактор истории и эволюции. Заключается оно в том, что этносы, имеющие свою культуру, религию и национальные особенности, сформировались под воздействием таких фактором, как войны, миграции населения, культуры определенных народностей, их смешения. К примеру, стиль и способ жизнь монгола и славянина имеют явные различия.

Также люди могут иметь отличия по социальному параметру. Тут учитывается уровень образование, культуры людей социальных притязаний. Экономический фактор является последним критерием различий между людьми. Возникают различия между индивидами из-за потребностей семьи и общества, их материального достатка.

psiho.guru

Фобия боязнь микробов: признаки и причины

Одной из самых популярных случаев зоофобии считается фобия боязнь микробов. Некоторые специалисты даже называют ее манией чистоты, хотя более распространенное ее название – микрофобия.

Наверняка у каждого найдется такой знакомый, который моет руки десятки раз в день. Иногда даже все усложняется до такой степени, что человек постоянно ощущает себя грязным, и испытывает непреодолимое желание помыться. Конечно же, чаще всего моют руки, и чем чаще это происходит, тем сильнее проявляется чувство некомфортности, и желание искупаться становится все более навязчивым.

Боязнь микробов

С таким явлением, как боязнь микробов, мы сталкиваемся очень часто. Как правило, такие случаи делятся на два вида:

  • Гермафобия – боязнь заражения различными инфекциями.
  • Бацилофобия – страх различных заразных насекомых и червей.
  • Для того, чтобы преодолеть страх люди используют всевозможные дезинфицирующие средства очень часто. Но это, как правило, оказывает обратный эффект. От того, что число помывок рук в день приближается к нескольким сотням, кожа на руках становится очень сухой и даже трескается. Зачастую к гермофобии приводят индивидуальные психологические проблемы. Много знаменитостей страдает этой фобией.

    Очень часто люди, подверженные таким страхам считают пыль и грязь основным источником всевозможных микробов. Боязнь загрязнений принято называть мизофобией или рупофобией. В переводе с греческого mysos или rhypos означает грязь. Данный вид страхов может называться по-разному, но, в общем, его можно охарактеризовать как страх за свое здоровье.

    Основные признаки микрофобов

    Микрофобам считают, что любой риск заражения, угрожает их жизни. Их легко распознать по излишней чистоплотности. Мысли о безысходности связаны с тем, что в трещины на коже, которые образовываются от частого мытья, также могут проникнуть опасные микробы.

    Конечно же, каждый из них понимает, что существуют множество видов полезных микробов и бактерий, которые помогают организму человека, к примеру, способствуют перевариванию пищи. Но, не смотря на это, ничего не могут поделать со своими страхами. Такие люди зачастую не ограничиваются преувеличением значимости собственной гигиены, но и заставляют мыться очень часто и всех членов семьи.

    Дети в таких семьях уже с самого раннего возраста воспитываются с акцентом на боязнь микробов. Родители контролируют весь круг их знакомых, чтобы заранее оградить от тех, кто может заразить их. Порой чистоплотность в таких семьях доходит до абсурда и не может привести ни к чему хорошему.

    Причины появления микрофобии

    Фобия боязнь микробов присуща тем людям, у которых уже есть проблемы психологического характера. Причинами этих проблем может быть постоянный стресс, чувство тревоги или страха, постоянное вмешательство в личную жизнь другого человека, изнасилование и некоторые другие. Также подобный вид фобии может возникать у тех, кто связан с микробами, вызывающими опасные болезни, по роду своей профессиональной деятельности.

    Подвержены таким страхам и те, чьи друзья или родственники умерли от заражения такими инфекциями. Такое состояние может возникать и в тех случаях, когда несколько семей живут в одной квартире. «Причиной боязни микробов также может стать беременность, аборт или резкий набор веса. Хотя и большинство из этих людей считают такие страхи нормальным явлением, их нельзя игнорировать, а необходимо начать работать над собой.

    Если не контролировать процесс усиления подобного страха, он может зайти слишком далеко, а избавление от фобии займет очень много времени. Если избавиться от проблемы самостоятельно уже не получается, то нужно как можно скорее обратиться за помощью к опытному психологу.»

    В последние годы учащаются фобии странные. К таким можно отнести и микрофобию, которой страдает огромное количество людей по всему миру. Страной, где наиболее распространены страхи подобного рода, считается США. Большинство экспертов, которые занимаются решением проблем подобного рода, считают, что основной причиной страха является небезопасная среда, в которой мы проживаем.

    Признаки гермофобии могут проявиться у многих после просмотра различных фильмов, в которых содержится подробная информация о заражениях микробами.

    zdorovat.ru

    Будьте всегда
    в Настроении

    Генотипическая изменчивость: виды, формы, характеристика и примеры

    От Masterweb

    Доступна после регистрации

    Одним из ключевых понятий биологии является изменчивость. Так называют присущее всем живым системам свойство – способность организмов к приобретению новых признаков в пределах своего биологического вида. Изменчивость проявляется в разнообразии особей, принадлежащих данному виду (популяции).

    Типы изменчивости

    Существует два основных источника изменчивости, лежащие в основе двух различных ее типов.

    Во-первых, различия могут обусловливаться взаимодействием организмов со средой в ходе онтогенеза (индивидуального развития). Такая изменчивость называется фенотипической или модификационной. Особи приобретают таким путем лучшую приспособляемость к конкретным условиям среды обитания. При этом не происходит изменения генотипа – изменяется проявление генов, но не сами гены. Черты, приобретенные организмом в результате действия фенотипической изменчивости, не наследуются.

    Классический пример подобных изменений – однояйцевые (монозиготные) близнецы, один из которых занимается тяжелой атлетикой, а другой – бегом на длинные дистанции. Индивидуальные различия между ними будут весьма существенны, но не передадутся их потомкам.

    Во-вторых, особи отличаются благодаря неодинаковости генотипа. Такой тип формирования новых признаков называется генотипической изменчивостью. Примеры ее весьма разнообразны: варианты окраски плодов и цветков у растений, шерсти у животных и цвета волос или тип телосложения у человека. Также к проявлениям ее относятся различные наследственные патологии, те или иные проявления одаренности у детей и так далее.

    Виды и общая характеристика генотипической изменчивости

    Организм приобретает уникальные наследственные черты посредством нескольких способов, каждый из которых связан с изменением в структуре генотипа. В зависимости от факторов, обусловливающих изменения генотипа, различают такие виды генотипической изменчивости, как комбинативная и мутационная.

    Комбинативная форма возникает вследствие особенностей полового размножения. Благодаря ей потомки одних и тех же родителей различаются между собой и не являются родительскими копиями – клонами.

    Мутационная является следствием происходящих в генотипе стойких изменений наследственного материала – генов, закодированных структурой ДНК. Такие изменения называются мутациями.

    В каждом из этих случаев индивидуальные черты, приобретенные особью, сохраняются в течение жизни, наследуются потомством и впоследствии проявляются у него. Это – главные признаки генотипической изменчивости, отличающие ее от модификационной.

    Некоторые проявления наследственной изменчивости подчиняются определенной закономерности, выражающейся в параллелизме характера изменений (гомологии аллельных форм) у генетически близких групп организмов.

    Факторы комбинативной изменчивости

    Половой способ размножения приводит к образованию множества новых сочетаний родительских генов. В основе такой перекомбинации лежат несколько различных процессов:

    • Так называемый кроссинговер (перекрест). Сущность этого явления, заключается в том, что при конъюгации – соединении гомологичных хромосом в ходе мейоза – происходит обмен участками между хромосомами. Кроссинговер способствует появлению у потомства нетипичных для родительских организмов признаков.
      • В ходе того же процесса – мейоза, перекомбинированные хромосомы расходятся к полюсам клетки независимо, что в итоге приводит к образованию разнокачественных гамет – половых клеток с разными сочетаниями генов. Именно этот очень важный фактор генотипической изменчивости является основой третьего закона Менделя (принципа независимого наследования признаков). К примеру, у гетерозиготных родителей с II и III группами крови могут родиться дети с I либо IV группами.
      • Независимое расхождение хроматид при втором мейотическом делении приводит к аналогичному результату.
      • Встреча гамет, результатом которой становится оплодотворение и объединение генетического материала родителей, происходит случайным образом. Следовательно, каждый раз сочетание родительских хромосом происходит также случайным образом.
      • Проявления комбинативной изменчивости

        Все факторы, обусловливающие данную форму изменчивости, действуют одновременно и независимо. Результатом является огромное разнообразие генотипов (если популяция достаточно велика). Комбинативная изменчивость обеспечивает каждой особи генетическую уникальность (за исключением однояйцевых близнецов). Так, если посчитать разнообразие вариантов для человека из расчета на одну пару гомологичных хромосом – одна пара аллельных генов, то оно составит 223 возможных комбинаций (гаплоидный набор у человека – 23 хромосомы).

        В действительности хромосомы различаются не по одному, а по многим генам. Также в приведенном расчете не учитывается влияние кроссинговера. Кроме того, в геноме многие гены существуют во множестве копий, количество этих копий, унаследованных от разных родителей, неодинаково, что еще дополняет возможности комбинирования. Так что каждый человек с его врожденными неповторимыми чертами (и любой индивидуальный организм – животное или растение) может служить примером проявления генотипической комбинативной изменчивости.

        Также следует отметить, что при этой форме изменчивости подвергаются «перетасовке» сочетания генов. Изменений в самих генах не происходит. Новые сочетания признаков легко образуются, но и распадаются при дальнейшей передаче генетического материала следующим поколениям тоже достаточно легко.

        Мутации как источник изменчивости

        Устойчивые изменения генотипа возникают в результате мутаций. Мутагенез (возникновение мутаций в организме) происходит как спонтанно с определенной частотой, так и под влиянием различных мутагенных факторов – физических, химических или биологических.

        Мутациям свойственен скачкообразный характер возникновения, индивидуальность (появление у отдельных особей), повторяемость. Мутировать может любой локус генома, вызвав изменения как незначительных, так и жизненно важных для организма признаков.

        Мутации могут быть доминантными и рецессивными по характеру проявления. Рецессивные мутации не проявляются у гетерозиготных организмов и способны скрыто сохраняться в генофонде популяции долгое время, образуя резерв генотипической изменчивости.

        По адаптивному значению мутации достаточно условно можно подразделить на полезные (положительные), вредные (отрицательные) или нейтральные. В различных условиях адаптивное значение мутации может меняться.

        В зависимости от типа мутирующих клеток мутации бывают соматические и генеративные. Соматические мутации проявляются у организма-мутанта и не передаются при половом размножении, их можно сохранить, например, при вегетативном способе размножения растений. Генеративные мутации возникают в репродуктивных клетках и проявляются в последующих поколениях.

        По характеру изменения генетического материала, различают следующие формы генотипической изменчивости:

      • генные (точковые) мутации – изменения в нуклеотидной структуре того или иного гена;
      • хромосомные мутации – изменения структуры хромосом;
      • геномные мутации – изменение количества хромосом в клетках мутанта.
      • Генные мутации

        Мутации этого вида возникают в пределах одного гена при развороте группы нуклеотидов, а также при выпадении, дублировании, замене одного или нескольких нуклеотидов ДНК. Мутировавший ген транскрибируется, затем транслируется в процессе белкового синтеза. При этом мутация может привести (но не обязательно приводит) к синтезу другого белка, что влечет за собой изменение того или иного признака организма. При мутациях регуляторных генов может происходить изменение экспрессии (активности) генов структурных, что также ведет к изменению (зачастую весьма серьезному) признаков особи.

        Яркий пример генной мутации – серповидно-клеточная анемия человека. Это заболевание вызывается единичной значимой нуклеотидной заменой в одном из генов, что приводит к аминокислотной замене в белке гемоглобине. В результате снижается стойкость и кислород-транспортирующая способность гемоглобина, а эритроциты приобретают характерную серповидную форму. Однако такие эритроциты оказываются устойчивы против малярийного плазмодия, то есть имеют и положительное адаптивное значение. Поэтому гетерозиготные носители этой мутации не выбраковывались отбором в некоторых тропических регионах (тех, что эндемичны по малярии). Гомозиготы по данному гену погибают, как правило, в очень раннем возрасте, поскольку не имеют в крови нормальных эритроцитов.

        Генные мутации являются наиболее распространенной формой мутационных изменений. Они служат важнейшим источником генотипической изменчивости, поскольку способны накапливаться и неограниченное время сохраняться в генофонде популяции.

        Хромосомные мутации

        Среди изменений, затрагивающих структуру хромосом, различают внутрихромосомные и межхромосомные мутации.

        Внутрихромосомные мутации возникают при следующих явлениях:

      • инверсия – поворот участка хромосомы на 180 градусов. Гены в таком участке расположены в обратной последовательности;
      • делеция – утрата фрагмента хромосомы;
      • дупликация – повторение участка хромосомы.
      • Межхромосомные мутации вызываются различного рода перемещениями фрагмента хромосомы на негомологичную ей хромосому – транслокациями. Эти перемещения могут происходить с обменом или без обмена участками между хромосомами либо с разными вариантами слияния фрагментов. Крайним случаем транслокации, пограничным с геномной мутацией, считаются аберрации – слияние или разделение негомологичных хромосом.

        Изменения хромосомной структуры часто приводят к тяжелым последствиям для организма: к летальному исходу на ранних стадиях онтогенеза или к врожденным порокам развития. К таким негативным проявлениям наследственной генотипической изменчивости относится, например, синдром «кошачьего крика» у детей. Эта хромосомная аномалия (делеция в пятой хромосоме) выражается в том, что плач ребенка похож на кошачье мяуканье, однако, мутация затрагивает не только голосовой аппарат, но и центральную нервную систему и обычно летальна в раннем возрасте.

        Геномные мутации

        Эти мутации связаны с изменением количества хромосом. Они происходят, как правило, в результате нерасхождения хромосом к клеточным полюсам при мейозе. Различают полиплоидные и анеуплоидные геномные мутации.

        Полиплоидия – это увеличение количества хромосом, кратное гаплоидному набору. У животных такая мутация встречается крайне редко, как правило, полиплоидные зародыши высших животных и человека погибают на начальных стадиях эмбриогенеза. Среди растений полиплоидия встречается гораздо чаще и может происходить при межвидовой и межродовой гибридизации. Например, культурная слива (имеет 48 хромосом) является полиплоидным гибридом терна (16 хромосом) и алычи (8 хромосом) с последующим удвоением количества хромосом.

        Анеуплоидия (гетероплоидия) – это не кратное гаплоидному набору изменение числа хромосом. Результатом такого изменения становятся гаметы с недостатком одной (моносомия) или двух (нуллисомия) хромосом, а также с лишними хромосомами (трисомия, тетрасомия и т. д.). Примером анеуплоидии у человека может служить такое заболевание, как синдром Дауна – трисомия по 21-й хромосоме (в 21-й паре хромосом присутствует еще одна лишняя хромосома).

        Геномные, как и хромосомные, формы мутационной генотипической изменчивости наиболее часто оказывают негативное воздействие на человеческий организм, приводят к тяжелым наследственным заболеваниям.

        Наследственная изменчивость как основа формирования фенотипа

        Генотипический и модификационный типы изменчивости тесно связаны. Любые ненаследственные изменения отражают способность организмов к ответу на вызов внешней среды, а эта способность обусловлена генетически, поскольку пределы, в которых возможны такие изменения – норма реакции, – определяются генотипом организма.

        Генетически обусловленные признаки, варианты которых ограничены малым числом и не имеют промежуточных форм – дискретные, или качественные, признаки (такие как группа крови или цвет глаз) – практически не подвержены влиянию внешних условий. Такие признаки не затрагиваются действием фенотипической изменчивости.

        В свою очередь, признаки, характеризующиеся непрерывной изменчивостью организмов в популяции – например, рост, оттенок кожи, мышечная масса, – испытывают серьезное влияние со стороны среды. Внешние воздействия модифицируют фенотип по этим признакам в достаточно широких пределах нормы реакции.

        Таким образом, генотип, формирующийся под воздействием наследственной изменчивости, закладывает основу фенотипа. Ненаследственные же модификации, в разной степени влияя на признаки, окончательно формируют фенотип организма.

        Роль генотипической изменчивости в функционировании и эволюции живых систем

        Без преувеличения можно сказать, что наследственная изменчивость играет определяющую роль в эволюционном процессе. Формируемое через ее посредство генетическое разнообразие служит материалом, на который воздействует естественный и половой отбор.

        Абсолютный консерватизм при передаче наследственной информации (если бы он был возможен) обеспечил бы абсолютную стабильность генотипа. Тем самым живые системы лишились бы всякой адаптивной способности при меняющихся условиях среды. С другой стороны, стало бы невозможным никакое видообразование, и все разнообразие биологических видов, включая человека, не смогло бы сформироваться.

        Наследственная генотипическая изменчивость важна также и в практической деятельности человека. Селекция культурных растений и домашних животных целиком основывается на использовании наследственных изменений различных полезных для человека признаков и искусственном выбраковывании признаков вредных, снижающих урожайность или устойчивость к заболеваниям различных сортов растений, пород животных.

        Кроме того, производство многих лекарственных средств, таких как современные антибиотики, основано на применении искусственно индуцированных мутаций к микроорганизмам, вырабатывающим такие препараты. Изучение же конкретных механизмов, задействованных природой в процессах генотипической изменчивости, помогает в понимании природы различных тяжелых заболеваний и в поиске способов их выявления и терапии.

        www.nastroy.net

        Задание-7(часть.1)

        Транскрипт

        1 Задание-7(часть.1) 3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции Основные термины и понятия, проверяемые в экзаменационной работе: близнецовый метод, генеалогический метод, генные мутации, геномные мутации, генотипическая изменчивость, закон гомологических рядов наследственной изменчивости, комбинативная изменчивость, модификационная изменчивость, мутации, ненаследственная изменчивость, полиплоидия, резус фактор, родословная, синдром Дауна, хромосомные мутации, цитогенетичекий метод Изменчивость, ее виды и биологическое значение Изменчивость это всеобщее свойство живых систем, связанное с изменениями фенотипа и генотипа, возникающими под влиянием внешней среды или в результате изменений наследственного материала. Различают ненаследственную и наследственную изменчивость. Ненаследственная изменчивость. Ненаследственная, или групповая (определенная), или модификационная изменчивость это изменения фенотипа под влиянием условий внешней среды. Модификационная изменчивость не затрагивает генотип особей. Генотип, оставаясь неизменным, определяет пределы, в которых может изменяться фенотип. Эти пределы, т.е. возможности для фенотипического проявления признака, называются нормой реакции и наследуются. Норма реакции устанавливает границы, в которых может изменяться конкретный признак. Разные признаки обладают разной нормой реакции широкой или узкой.

        2 Так, например, такие признаки, как группа крови, цвет глаз не изменяются. Форма глаза млекопитающих изменяется незначительно и обладает узкой нормой реакции. Удойность коров может варьировать в довольно широких пределах в зависимости от условий содержания породы. Широкую норму реакции могут иметь и другие количественные признаки рост, размеры листьев, количество зерен в початке и т.д. Чем шире норма реакции, тем больше возможностей у особи приспособиться к условиям окружающей среды. Вот почему особей со средней выраженностью признака больше, чем особей с крайними его выражениями. Это хорошо иллюстрируется таким примером, как количество карликов и гигантов у людей. Их мало, тогда как людей с ростом в диапазоне см в тысячи раз больше. На фенотипические проявления признака влияет совокупное взаимодействие генов и условий внешней среды. Модификационные изменения не наследуются, но не обязательно носят групповой характер и не всегда проявляются у всех особей вида, находящихся в одинаковых условиях среды. Модификации обеспечивают приспособленность особи к этим условиям. Наследственная изменчивость (комбинативная, мутационная, неопределенная). Комбинативная изменчивость возникает при половом процессе в результате новых сочетаний генов, возникающих при оплодотворении, кроссинговере, конъюгации т.е. при процессах, сопровождающихся рекомбинациями (перераспределением и новыми сочетаниями) генов. В результате комбинативной изменчивости возникают организмы, отличающиеся от своих родителей по генотипам и фенотипам. Некоторые комбинативные изменения могут быть вредны для отдельной особи. Для вида же комбинативные изменения, в целом, полезны, т.к. ведут к генотипическому и фенотипическому разнообразию. Это способствует выживанию видов и их эволюционному прогрессу. Мутационная изменчивость связана с изменениями последовательности нуклеотидов в молекулах ДНК, выпадения и вставок крупных участков в молекулах ДНК, изменений числа молекул ДНК (хромосом). Сами подобные изменения называются мутациями. Мутации наследуются.

        3 Среди мутаций выделяют: генные вызывающими изменения последовательности нуклеотидов ДНК в конкретном гене, а следовательно в и РНК и белке, кодируемом этим геном. Генные мутации бывают как доминантными, так и рецессивными. Они могут привести к появлению признаков, поддерживающих или угнетающих жизнедеятельность организма; генеративные мутации затрагивают половые клетки и передаются при половом размножении; соматические мутации не затрагивают половые клетки и у животных не наследуются, а у растений наследуются при вегетативном размножении; геномные мутации (полиплоидия и гетероплоидия) связаны с изменением числа хромосом в кариотипе клеток; хромосомные мутации связаны с перестройками структуры хромосом, изменением положения их участков, возникшего в результате разрывов, выпадением отдельных участков и т.д. Наиболее распространены генные мутации, в результате которых происходит изменение, выпадение или вставка нуклеотидов ДНК в гене. Мутантные гены передают к месту синтеза белка уже иную информацию, а это, в свою очередь, ведет к синтезу других белков и возникновению новых признаков. Мутации могут возникать под влиянием радиации, ультрафиолетового излучения, различных химических агентов. Не все мутации оказываются эффективными. Часть их исправляется при репарациях ДНК. Фенотипически мутации проявляются в том случае, если они не привели к гибели организма. Большинство генных мутаций носят рецессивный характер. Эволюционное значение имеют фенотипически проявившиеся мутации, обеспечившие особям либо преимущества в борьбе за существование, либо наоборот, повлекшие их гибель под давлением естественного отбора. Мутационный процесс повышает генетическое разнообразие популяций, что создает предпосылки для эволюционного процесса. Частоту мутаций можно повышать искусственно, что используется в научных и практических целях. ПРИМЕРЫ ЗАДАНИЙ

        4 Часть А А1. Под модификационной изменчивостью понимают 1) фенотипическую изменчивость 2) генотипическую изменчивость 3) норму реакции 4) любые изменения признака А2. Укажите признак с наиболее широкой нормой реакции 1) форма крыльев ласточки 2) форма клюва орла 3) время линьки зайца 4) количество шерсти у овцы А3. Укажите правильное утверждение 1) факторы среды не влияют на генотип особи 2) наследуется не фенотип, а способность к его проявлению 3) модификационные изменения всегда наследуются 4) модификационные изменения вредны А4. Укажите пример геномной мутации 1) возникновение серповидно клеточной анемии 2) появление триплоидных форм картофеля 3) создание бесхвостой породы собак 4) рождение тигра альбиноса А5. С изменением последовательности нуклеотидов ДНК в гене связаны 1) генные мутации 2) хромосомные мутации 3) геномные мутации 4) комбинативные перестройки А6. К резкому повышению процента гетерозигот в популяции тараканов может привести: 1) увеличение количества генных мутаций 2) образование диплоидных гамет у ряда особей 3) хромосомные перестройки у части членов популяции 4) изменение температуры окружающей среды А7. Ускоренное старение кожи у сельских жителей по сравнению с городскими, является примером 1) мутационной изменчивости

        5 2) комбинационной изменчивости 3) генных мутаций под действием ультрафиолетового излучения 4) модификационной изменчивости А8. Основной причиной хромосомной мутации может стать 1) замена нуклеотида в гене 2) изменение температуры окружающей среды 3) нарушение процессов мейоза 4) вставка нуклеотида в ген Часть В В1. Какие примеры иллюстрируют модификационную изменчивость 1) загар человека 2) родимое пятно на коже 3) густота шерстяного покрова кролика одной породы 4) увеличение удоя у коров 5) шестипалость у человека 6) гемофилия В2. Укажите события, относящиеся к мутациям 1) кратное увеличение числа хромосом 2) смена подшерстка у зайца зимой 3) замена аминокислоты в молекуле белка 4) появление в семье альбиноса 5) разрастание корневой системы у кактуса 6) образование цист у простейших ВЗ. Соотнесите признак, характеризующий изменчивость с ее видом

        6 Часть С С1. Какими способами можно добиться искусственного повышения частоты мутаций и зачем это нужно делать? С2. Найдите ошибки в приведенном тексте. Исправьте их. Укажите номера предложений, в которых сделаны ошибки. Объясните их. 1. Модификационная изменчивость сопровождается генотипическими изменениями. 2. Примерами модификации являются осветление волос после долгого пребывания на солнце, повышение удойности коров при улучшении кормления. 3. Информация о модификационных изменениях содержится в генах. 4. Все модификационные изменения наследуются. 5. На проявление модификационных изменений оказывают влияние факторы окружающей среды. 6. Все признаки одного организма характеризуются одинаковой нормой реакции, т.е. пределами их изменчивости. Ответы Часть А. А1 1. А2 4. А3 2. А4 2. А5 1. А6 1. А7 4. А8 3. Часть В. В1 1, 3, 4. В2 1, 3, 4. В3 А 1; Б 1; В 2; Г 1; Д 2; Е 2. Часть С. С1 Искусственный мутагенез используется в исследовательских целях, а также в работе селекционеров. В качестве мутагенов применяются рентгеновские лучи, ионизирующая радиация, различные химические агенты колхицин, йод, никотин и т.д. Искусственный мутагенез применялся Б.Л. Астауро вым для выведения продуктивных пород тутового шелкопряда, для выведения полиплоидных форм растений, эффективным оказался колхицин, повышавший плоидность генома картофеля, томатов, используя рентгеновское

        7 излучение, вывели сорт яровой пшеницы Новосибирская 67. С2 Ошибки допущены в предложениях 1, 4, 6. 1)(1) Модификационная изменчивость не изменяет генотип организма. 2) (4) Модификационные изменения не наследуются. 3) (6) Каждый признак обладает своей нормой реакции.

        8 Задание-7(часть2) 3.4. Генетика, ее задачи. Наследственность и изменчивость свойства организмов. Основные генетические понятия Основные термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, взаимодействие генов, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Г. Менделя, количественные признаки, кроссинговер, летали, множественные аллели, моногибридное скрещивание, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, цитологические основы законов Менделя. Генетика наука о наследственности и изменчивости организмов. Эти два свойства неразрывно связаны друг с другом, хотя имеют противоположную направленность. Наследственность предполагает сохранение информации, а изменчивость эту информацию меняет. Наследственность это свойство организма повторять в ряду поколений свои признаки и особенности своего развития. Изменчивость свойство организмов изменять свои признаки под влиянием внешней или внутренней среды, а также в результате новых генетических комбинаций, возникающих при половом размножении. Роль изменчивости заключается в том, что она «поставляет» новые генетические комбинации, подвергающиеся действию естественного отбора, а наследственность сохраняет эти комбинации. К основным генетическим понятиям относятся следующие: Ген участок молекулы ДНК, в котором закодирована информация о последовательности аминокислот в одной молекуле белка. Аллель пара генов, отвечающих за альтернативное (различное) проявление одного и того же признака. Например, за цвет глаз отвечают два аллельных гена, расположенных в одинаковых локусах (местах) гомологичных хромосом. Только один из них может отвечать за развитие карих лаз, а другой за развитие голубых глаз. В том случае, когда оба гена отвечают за одинаковое развитие признака, говорят о гомозиготном организме по данному признаку. Если аллельные гены определяют различное развитие признака, говорят о гетерозиготном организме. Аллельные гены могут быть доминантными, подавляющими альтернативный ген, и рецессивными, подавляемыми. Совокупность генов организма называется генотипом данного организма. Генотип организма описывается словами «гомозиготный» или «гетерозиготный». Однако не все гены проявляются. Совокупность внешних признаков организма называется его фенотипом. Кареглазый, полный, высокий это способ описания фенотипа организма. Говорят также о доминантном или рецессивном фенотипе. Генетика изучает закономерности наследования признаков. Основным методом генетики является гибридологический метод или скрещивание. Этот метод был разработан австрийским ученым Грегором Менделем в 1865 г. Развитие генетики повлекло за собой развитие многих научных направлений и, прежде всего, эволюционного учения, селекции растений и животных, медицины, биотехнологии, фармакологии и др. На рубеже XX и XXI столетий расшифрован геном человека. Ученых поразило, что у нас всего генов, а не , как думали раньше. У круглого червя 19 тыс. генов, у горчицы 25 тыс. Различия между человеком и шимпанзе составляют 1% генов, а с

        9 мышью 10%. Человеку достались в наследство и гены, которым 3 миллиарда лет и относительно молодые гены. Что дает науке прочтение генома? Прежде всего, это знание позволяет целенаправленно вести генетические исследования по выявлению как патологических, так и нужных, полезных генов. Ученые не оставляют надежды на излечение людей от таких заболеваний, как рак и СПИД, диабет и др. Также не оставляют надежды и на преодоление дряхлой старости, преждевременной смертности и многих других бед человечества Закономерности наследственности, их цитологические основы. Моно и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т. Моргана. Хромосомная теория наследственности. Генетика пола. Наследование признаков, сцепленных с полом. Генотип как целостная система. Развитие знаний о генотипе. Геном человека. Взаимодействие генов. Решение генетических задач. Составление схем скрещивания. Законы Г. Менделя и их цитологические основы Термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Менделя, моногибридное скрещивание, морганида, наследственность, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, хромосомная теория наследственности, цитологические основы законов Менделя. Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, ставшие основой гибридологического метода: 1. Объектом исследования стали растения гороха, принадлежавшие к одному виду. 2. Опытные растения четко отличались по своим признакам высокие низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами. 3. Первое поколение от исходных родительских форм всегда было одинаковым. Высокие родители давали высокое потомство, низкие родители давали растения маленького роста. Таким образом, исходные сорта были так называемые «чистые линии». 4. Г. Мендель вел количественный учет потомков второго и последующих поколений, у которых наблюдалось расщепление в признаках. Законы Г. Менделя описывают характер наследования отдельных признаков на протяжении нескольких поколений. Первый закон Менделя или правило единообразия. Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам: форма семени (круглая / некруглая); окраска семени (желтая / зеленая); кожура семени (гладкая / морщинистая ) и т.д. При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами. Он назвал этот признак доминантным. Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным). Так экзаменационная работа требует от учащихся умения правильно оформлять записи при решении генетических задач, то мы покажем пример такой записи.

        10 1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон. При скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам единообразными и похожими на родителя с доминантным признаком. В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фен типу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться. Например, от красноцветковых и белоцветковых растений львиного зева в потомстве 25% особей красные, 25% белые, а 50% розовые. 2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1 АА аа 100% Аа Аа аа 50% Аа и 50% аа Второй закон Менделя или закон расщепления. При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3 : 1 по фенотипу и 1: 2 :1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания. Появляются семена как с желтой, так и с зеленой окраской. Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.

        11 Для дальнейшей записи используется решетка Пеннета: Во втором поколении возможно появление 4 фенотипов в отношении 9 : 3 : 3 : 1 и 9 генотипов. В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив: для диплоидных организмов; для генов, расположенных в разных гомологичных хромосомах; при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении. Указанные условия и являются цитологическими основами дигибридного скрещивания. Те же закономерности распространяются на полигибридные скрещивания. В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации. В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление это результат случайного сочетания гамет, несущих разные аллели. Так как события случайны, то закономерность носит статистический характер, т.е. определяется большим числом равновероятных событий встреч гамет, несущих разные (или одинаковые) альтернативные гены. ПРИМЕРЫ ЗАДАНИЙ 1 Часть А А1. Доминантный аллель это 1) пара одинаковых по проявлению генов 1 Примеры заданий по генетике предлагаются только в частях А и С экзаменационной работы.

        12 2) один из двух аллельных генов 3) ген, подавляющий действие другого гена 4) подавляемый ген А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о 1) нескольких признаках организма 2) одном признаке организма 3) нескольких белках 4) молекуле т-рнк А3. Если признак не проявляется у гибридов первого поколения, то он называется 1) альтернативным 2) доминантным 3) не полностью доминирующим 4) рецессивным А4. Аллельные гены расположены в 1) идентичных участках гомологичных хромосом 2) разных участках гомологичных хромосом 3) идентичных участках негомологичных хромосом 4) разных участках негомологичных хромосом А5. Какая запись отражает дигетерозиготный организм: 1) ААВВ 2) АаВв 3) АаВвСс 4) ааввсс А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов над шаровидной 1) белая, шаровидная 3) желтая дисковидная 2) желтая, шаровидная 4) белая, дисковидная А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком. 1) все ВВ 2) все Вв 3) 50% ВВ и 50% Вв 4) 75% ВВ и 25% Вв А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети? 1) ААвв 2) АаВв 3) аавв 4) ААвВ А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам? 1) 25% 2) 75% 3) 12,5% 4) 50% А10. Второй закон Менделя это закон, описывающий процесс 1) сцепления генов 2) взаимного влияния генов 3) расщепления признаков 4) независимого распределения гамет А11. Сколько типов гамет образует организм с генотипом ААВвСс 1) один 2) два 3) три 4) четыре Часть С С1. Определите возможные генотипы родителей и пятерых детей, среди которых были дети с римскими и прямыми носами, полными и тонкими губами, если известно, что мужчина с римским носом и тонкими губами женился на девушке с также с римским

        13 носом и полными губами. Докажите свой ответ, записав решение задачи в виде двух схем скрещивания. Сколько схем скрещивания может быть проанализировано при решении этой задачи? Хромосомная теория наследственности. Основоположник хромосомной теории Томас Гент Морган, американский генетик, Нобелевский лауреат. Морган и его ученики установили, что: каждый ген имеет в хромосоме определенный локус ( место); гены в хромосоме расположены в определенной последовательности; наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе; группы генов, расположенных в одной хромосоме, образуют группы сцепления; число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей; между гомологичными хромосомами может происходить обмен участками (кроссинговер ); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов; частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними; набор хромосом в клетках данного типа (кариотип ) является характерной особенностью вида; частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами. Задачи, иллюстрирующие хромосомную теорию, достаточно сложны и громоздки по записи, поэтому в экзаменационных работах ЕГЭ даются задания на наследование, сцепленное с полом. Генетика пола. Наследование, сцепленное с полом. Хромосомные наборы разных полов отличаются по строению половых хромосом. У-хромосома мужчин не содержит многих аллелей, имеющихся в Х-хромосоме. Признаки, определяемые генами половых хромосом, называются сцепленными с полом. Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х- хромосомой и не имеющие аллеля в У-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, рецессивен. У человека У-хромосома передается от отца к сыновьям, а Х-хромосома к дочерям. Вторую хромосому дети получают от матери. Это всегда Х-хромосома. Если мать несет патологический рецессивный ген в одной из Х-хромосом (например, ген дальтонизма или гемофилии), но при этом сама не больна, то она является носительницей. В случае передачи этого гена сыновьям они могут оказаться больными данным заболеванием, ибо в У-хромосоме нет аллеля, подавляющего патологический ген. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы. У птиц гетерогаметными являются самки, а гомогаметными самцы.

        14 Пример наследования, сцепленного с полом. Известно, что у человека существует несколько признаков, сцепленных с Х-хромосомой. Одним из таких признаков является отсутствие потовых желез. Это рецессивный признак, если Х-хромосома, несущая определяющий его ген, попадает к мальчику, то у него этот признак обязательно проявится. Если вы читали известный роман Патрика Зюскинда «Парфюмер», то вы помните, что речь шла о младенце, у которого не было запаха. Рассмотрим пример наследования, сцепленного с полом. Мать имеет потовые железы, но она носительница рецессивного признака Хр Х, отец здоров ХУ. Гаметы матери Хр, X. Гаметы отца X, У. От этого брака могут родиться дети со следующими генотипами и фенотипами: Генотип, как целостная, исторически сложившаяся система. Термин генотип предложен в 1909 г. датским генетиком Вильгельмом Иогансеном. Он же ввел термины: ген, аллель, фенотип, линия, чистая линия, популяция. Генотип это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов. Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов. Аллельные гены ( точнее, их продукты белки) могут взаимодействовать друг с другом: в составе хромосом примером является полное и неполное сцепление генов; в паре гомологичных хромосом примерами являются полное и неполное доминирование, независимое проявление аллельных генов. Между собой могут взаимодействовать и неаллельные гены. Примером такого взаимодействия может быть появление новообразований при скрещиваниях двух, внешне одинаковых форм. Например, наследование формы гребня у кур определяется двумя генами R и Р: R розовидный гребень, Р гороховидный гребень. F1 RrPp появление ореховидного гребня в присутствии двух доминантных генов; при генотипе ггрр проявляется листовидный гребень. ПРИМЕРЫ ЗАДАНИЙ Часть А А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78? 1) одна 2) две 3) тридцать шесть 4) восемнадцать А2. Закономерности сцепленного наследования относятся к генам, расположенным в 1) разных не гомологичных хромосомах 2) гомологичных хромосомах

        15 3) в одной хромосоме 4) негомологичных хромосомах А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может? 1) ХdХ 2) XX 3) ХdХd 4) ХУ А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36? 1) 72 2) 36 3) 18 4) 9 А5. Частота кроссинговера между генами К и С 12%, между генами В и С 18%, между генами К и В 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены. 1) К-С-В 2) К-В-С 3) С-В-К 4) В-К-С А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме? 1) 1 : 1 2) 2 : 1 3) 3 : 1 4) 9 : 3 : 3 : 1 А7. От скрещивания двух гетерозиготных по двум признакам окраски серых крыс получили 16 особей. Каким будет соотношение потомства, если известно, что ген С основной ген окраски и в его присутствии появляются серые, белые и черные особи, а второй ген А влияет на распределение пигмента. В его присутствии появляются серые особи. 1) 9 серых, 4 черных, 3 белых 2) 7 черных, 7 черных, 2 белых 3) 3 черных, 8 белых, 5 серых 4) 9 серых, 3 черных, 4 белых А8. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой? 1) все девочки здоровы и не носительницы, а мальчики гемофилики 2) все мальчики здоровы, а девочки гемофилики 3) половина девочек больна, мальчики здоровы 4) все девочки носительницы, мальчики здоровы Часть С С1. Составьте прогноз появления внука дальтоника у мужчины-дальтоника и здоровой женщины, не несущей гена дальтонизма, при условии, что все его сыновья женятся на здоровых женщинах, не несущих гена дальтонизма, а дочери выходят замуж за здоровых мужчин. Докажите свой ответ записью схемы скрещивания Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции Основные термины и понятия, проверяемые в экзаменационной работе: близнецовый метод, генеалогический метод, генные мутации, геномные мутации, генотипическая изменчивость, закон гомологических рядов наследственной изменчивости, комбинативная изменчивость, модификационная изменчивость, мутации, ненаследственная изменчивость, полиплоидия, резус фактор, родословная, синдром Дауна, хромосомные мутации, цитогенетичекий метод.

        16 Изменчивость, ее виды и биологическое значение Изменчивость это всеобщее свойство живых систем, связанное с изменениями фенотипа и генотипа, возникающими под влиянием внешней среды или в результате изменений наследственного материала. Различают ненаследственную и наследственную изменчивость. Ненаследственная изменчивость. Ненаследственная, или групповая (определенная), или модификационная изменчивость это изменения фенотипа под влиянием условий внешней среды. Модификационная изменчивость не затрагивает генотип особей. Генотип, оставаясь неизменным, определяет пределы, в которых может изменяться фенотип. Эти пределы, т.е. возможности для фенотипического проявления признака, называются нормой реакции и наследуются. Норма реакции устанавливает границы, в которых может изменяться конкретный признак. Разные признаки обладают разной нормой реакции широкой или узкой. Так, например, такие признаки, как группа крови, цвет глаз не изменяются. Форма глаза млекопитающих изменяется незначительно и обладает узкой нормой реакции. Удойность коров может варьировать в довольно широких пределах в зависимости от условий содержания породы. Широкую норму реакции могут иметь и другие количественные признаки рост, размеры листьев, количество зерен в початке и т.д. Чем шире норма реакции, тем больше возможностей у особи приспособиться к условиям окружающей среды. Вот почему особей со средней выраженностью признака больше, чем особей с крайними его выражениями. Это хорошо иллюстрируется таким примером, как количество карликов и гигантов у людей. Их мало, тогда как людей с ростом в диапазоне см в тысячи раз больше. На фенотипические проявления признака влияет совокупное взаимодействие генов и условий внешней среды. Модификационные изменения не наследуются, но не обязательно носят групповой характер и не всегда проявляются у всех особей вида, находящихся в одинаковых условиях среды. Модификации обеспечивают приспособленность особи к этим условиям. Наследственная изменчивость (комбинативная, мутационная, неопределенная). Комбинативная изменчивость возникает при половом процессе в результате новых сочетаний генов, возникающих при оплодотворении, кроссинговере, конъюгации т.е. при процессах, сопровождающихся рекомбинациями (перераспределением и новыми сочетаниями) генов. В результате комбинативной изменчивости возникают организмы, отличающиеся от своих родителей по генотипам и фенотипам. Некоторые комбинативные изменения могут быть вредны для отдельной особи. Для вида же комбинативные изменения, в целом, полезны, т.к. ведут к генотипическому и фенотипическому разнообразию. Это способствует выживанию видов и их эволюционному прогрессу. Мутационная изменчивость связана с изменениями последовательности нуклеотидов в молекулах ДНК, выпадения и вставок крупных участков в молекулах ДНК, изменений числа молекул ДНК (хромосом). Сами подобные изменения называются мутациями. Мутации наследуются. Среди мутаций выделяют: генные вызывающими изменения последовательности нуклеотидов ДНК в конкретном гене, а следовательно в и-рнк и белке, кодируемом этим геном. Генные мутации бывают как доминантными, так и рецессивными. Они могут привести к появлению признаков, поддерживающих или угнетающих жизнедеятельность организма; генеративные мутации затрагивают половые клетки и передаются при половом размножении; соматические мутации не затрагивают половые клетки и у животных не наследуются, а у растений наследуются при вегетативном размножении; геномные мутации (полиплоидия и гетероплоидия) связаны с изменением числа хромосом в кариотипе клеток;

        17 хромосомные мутации связаны с перестройками структуры хромосом, изменением положения их участков, возникшего в результате разрывов, выпадением отдельных участков и т.д. Наиболее распространены генные мутации, в результате которых происходит изменение, выпадение или вставка нуклеотидов ДНК в гене. Мутантные гены передают к месту синтеза белка уже иную информацию, а это, в свою очередь, ведет к синтезу других белков и возникновению новых признаков. Мутации могут возникать под влиянием радиации, ультрафиолетового излучения, различных химических агентов. Не все мутации оказываются эффективными. Часть их исправляется при репарациях ДНК. Фенотипически мутации проявляются в том случае, если они не привели к гибели организма. Большинство генных мутаций носят рецессивный характер. Эволюционное значение имеют фенотипически проявившиеся мутации, обеспечившие особям либо преимущества в борьбе за существование, либо наоборот, повлекшие их гибель под давлением естественного отбора. Мутационный процесс повышает генетическое разнообразие популяций, что создает предпосылки для эволюционного процесса. Частоту мутаций можно повышать искусственно, что используется в научных и практических целях. ПРИМЕРЫ ЗАДАНИЙ Часть А А1. Под модификационной изменчивостью понимают 1) фенотипическую изменчивость 2) генотипическую изменчивость 3) норму реакции 4) любые изменения признака А2. Укажите признак с наиболее широкой нормой реакции 1) форма крыльев ласточки 2) форма клюва орла 3) время линьки зайца 4) количество шерсти у овцы А3. Укажите правильное утверждение 1) факторы среды не влияют на генотип особи 2) наследуется не фенотип, а способность к его проявлению 3) модификационные изменения всегда наследуются 4) модификационные изменения вредны А4. Укажите пример геномной мутации 1) возникновение серповидно-клеточной анемии 2) появление триплоидных форм картофеля 3) создание бесхвостой породы собак 4) рождение тигра-альбиноса А5. С изменением последовательности нуклеотидов ДНК в гене связаны 1) генные мутации 2) хромосомные мутации 3) геномные мутации 4) комбинативные перестройки А6. К резкому повышению процента гетерозигот в популяции тараканов может привести: 1) увеличение количества генных мутаций 2) образование диплоидных гамет у ряда особей 3) хромосомные перестройки у части членов популяции

        18 4) изменение температуры окружающей среды А7. Ускоренное старение кожи у сельских жителей по сравнению с городскими, является примером 1) мутационной изменчивости 2) комбинационной изменчивости 3) генных мутаций под действием ультрафиолетового излучения 4) модификационной изменчивости А8. Основной причиной хромосомной мутации может стать 1) замена нуклеотида в гене 2) изменение температуры окружающей среды 3) нарушение процессов мейоза 4) вставка нуклеотида в ген Часть В В1. Какие примеры иллюстрируют модификационную изменчивость 1) загар человека 2) родимое пятно на коже 3) густота шерстяного покрова кролика одной породы 4) увеличение удоя у коров 5) шестипалость у человека 6) гемофилия В2. Укажите события, относящиеся к мутациям 1) кратное увеличение числа хромосом 2) смена подшерстка у зайца зимой 3) замена аминокислоты в молекуле белка 4) появление в семье альбиноса 5) разрастание корневой системы у кактуса 6) образование цист у простейших ВЗ. Соотнесите признак, характеризующий изменчивость с ее видом Часть С С1. Какими способами можно добиться искусственного повышения частоты мутаций и зачем это нужно делать? С2. Найдите ошибки в приведенном тексте. Исправьте их. Укажите номера предложений, в которых сделаны ошибки. Объясните их. 1. Модификационная изменчивость сопровождается генотипическими изменениями. 2. Примерами модификации являются осветление волос после долгого пребывания на солнце, повышение удойности коров при улучшении кормления. 3. Информация о

        19 модификационных изменениях содержится в генах. 4. Все модификационные изменения наследуются. 5. На проявление модификационных изменений оказывают влияние факторы окружающей среды. 6. Все признаки одного организма характеризуются одинаковой нормой реакции, т.е. пределами их изменчивости Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм. Наследственные болезни человека, их причины, профилактика Основные термины и понятия, проверяемые в экзаменационной работе: биохимический метод, близнецовый метод, гемофилия, гетероплоидия, дальтонизм, мутагены, мутагенез, полиплоидия Мутагены, мутагенез Мутагены это физические или химические факторы, влияние которых на организм может привести к изменению его наследственных признаков. К таким факторам относятся рентгеновские и гамма-лучи, радионуклиды, оксиды тяжелых металлов, определенные виды химических удобрений. Некоторые мутации могут быть вызваны вирусами. К генетическим изменениям в поколениях могут привести и такие распространенные в современном обществе агенты, как алкоголь, никотин, наркотики. От интенсивности влияния перечисленных факторов зависит скорость и частота мутаций. Увеличение частоты мутаций ведет за собой увеличение числа особей с врожденными генетическими аномалиями. По наследству передаются мутации, затронувшие половые клетки. Однако мутации, произошедшие в соматических клетках, могут привести к раковым заболеваниям. В настоящее время проводятся исследования по выявлению мутагенов в окружающей среде и разрабатываются эффективные меры по их обезвреживанию. Несмотря на то что частота мутаций относительно невелика, их накопление в генофонде человечества может привести к резкому повышению концентрации мутантных генов и их проявлению. Вот почему необходимо знать о мутагенных факторах и принимать на государственном уровне меры по борьбе с ними. Медицинская генетика раздел антропогенетики, изучающий наследственные заболевания человека, их происхождение, диагностику, лечение и профилактику. Основным средством сбора информации о больном является медико-генетическое консультирование. Оно проводится в отношении лиц, у которых среди родных наблюдались наследственные заболевания. Цель прогноз вероятности рождения детей с патологиями, либо исключение возникновения патологий. Этапы консультирования: выявление носителя патогенного аллеля; расчет вероятности рождения больных детей; сообщение результатов исследования будущим родителям, родственникам. Наследственные заболевания, передаваемые потомкам: генные, сцепленные с Х-хромосомой гемофилия, дальтонизм; генные, сцепленные с У-хромосомой гипертрихоз (оволосение ушной раковины); генные аутосомные: фенилкетонурия, сахарный диабет, полидактилия, хорея Гентингтона и др.;

        20 хромосомные, связанные с мутациями хромосом, например синдром кошачьего крика; геномные поли и гетероплоидия изменение числа хромосом в кариотипе организма. Полиплоидия двух и более кратное увеличение числа гаплоидного набора хромосом в клетке. Возникает в результате нерасхождения хромосом в мейозе, удвоения хромосом без последующего деления клеток, слияния ядер соматических клеток. Гетероплоидия (анеуплоидия) изменение характерного для данного вида числа хромосом в результате их неравномерного расхождения в мейозе. Проявляется в появлении лишней хромосомы (трисомия по 21 хромосоме ведет к болезни Дауна) или отсутствии в кариотипе гомологичной хромосомы (моносомия ). Например, отсутствие второй Х-хромосомы у женщин вызывает синдром Тернера, проявляющийся в физиологических и умственных нарушениях. Иногда встречается полисомия появление нескольких лишних хромосом в хромосомном наборе. Методы генетики человека. Генеалогический метод составления родословных по различным источникам рассказам, фотографиям, картинам. Выясняются признаки предков и устанавливаются типы наследования признаков. Типы наследования : а) аутосомно-доминантное, б) аутосомно-рецессивное, в) сцепленное с полом наследование. Человек, в отношении которого составляется родословная, называется пробандом. Близнецовый. Метод изучения генетических закономерностей на близнецах. Близнецы бывают однояйцовые (монозиготные, идентичные) и разнояйцовые (дизиготные, неидентичные). Цитогенетический. Метод микроскопического изучения хромосом человека. Позволяет выявить генные и хромосомные мутации. Биохимический. На основе биохимического анализа позволяет выявить гетерозиготного носителя заболевания, например носителя гена фенилкетонурии можно выявить по повышенной концентрации фенилаланина в крови. Популяционно-генетический. Позволяет составить генетическую характеристику популяции, оценить степень концентрации различных аллелей и меру их гетерозиготности. Для анализа крупных популяций применяется закон Харди-Вайнберга. ПРИМЕРЫ ЗАДАНИЙ Часть С С1. Хорея Гентингтона тяжелейшее заболевание нервной системы, наследуется как аутосомный признак (А). Фенилкетонурия заболевание, вызывающее нарушения в обмене веществ, определяется рецессивным геном, наследуется по тому же типу. Отец гетерозиготен по гену хореи Гентингтона и не страдает фенилкетонурией. Мать не страдает хореей Гентингтона и не несет генов, определяющих развитие фенилкетонурии. Каковы возможные генотипы и фенотипы детей от этого брака? С2. Женщина со вздорным характером вышла замуж за человека с мягким характером. От этого брака родились две дочери и сын (Елена, Людмила, Николай). У Елены и Николая оказался вздорный характер. Николай женился на девушке Нине с мягким характером. У них родилось два сына, один из которых (Иван) был скандалистом, а другой мягким человеком (Петр). Укажите на родословной этой семьи генотипы всех ее членов.

        21 Ответы Законы Г. Менделя и их цитологические основы.часть А. А1 3. А2 2. А3 4. А4 1. А5 2. А6 1. А7 2. А8 1. А9 1. А10 3. АН 4. Часть С. С1 1) При скрещивании гомозиготных по доминантным признакам родителей с генотипами ААвв ААВВ родятся все дети с римскими носами и полными губами. 2) При скрещивании гетерозиготных по доминантным признакам родителей с генотипами Аавв АаВв родятся дети с римским носами и полногубые, с римскими носами и тонкогубые, с прямыми носами и тонкогубые, с прямыми носами и полногубые. Дети, имеющие оба доминантных гена, будут с римскими носами и полногубые. Дети с одним доминантным геном будут либо с римским носом и тонкогубые, либо с прямым носом и полногубые, дети гомозиготные по двум рецессивным признакам будут иметь прямой нос и тонкие губы. 3. Можно проанализировать скрещивание гетерозиготного по доминантному признаку отца и гетерозиготную по одному из

        22 признаков (А или В) мать. Таким образом, можно проанализировать еще два случая скрещивания. Хромосомная теория наследственности.часть А. А1 1. А2 3. А3 2. А4 3. А5 1. А6 3. А7 4. А8 4. Часть С. С1 Вероятность появления внука дальтоника в данном случае 25%. У сыновей, которые женятся на здоровых по данному признаку женщинах, детей дальтоников не будет Часть А. А1 1. А2 4. А3 2. А4 2. А5 1. А6 1. А7 4. А8 3. Часть В. В1 1, 3, 4. В2 1, 3, 4. В3 А 1; Б 1; В 2; Г 1; Д 2; Е 2. Часть С. С1 Искусственный мутагенез используется в исследовательских целях, а также в работе селекционеров. В качестве мутагенов применяются рентгеновские лучи, ионизирующая радиация, различные химические агенты колхицин, йод, никотин и т.д. Искусственный мутагенез применялся Б.Л. Астауро вым для выведения продуктивных пород тутового шелкопряда, для выведения полиплоидных форм растений, эффективным оказался колхицин, повышавший плоидность генома картофеля, томатов, используя рентгеновское излучение, вывели сорт яровой пшеницы Новосибирская 67. С2 Ошибки допущены в предложениях 1, 4, 6. 1)(1) Модификационная изменчивость не изменяет генотип организма. 2) (4) Модификационные изменения не наследуются. 3) (6) Каждый признак обладает своей нормой реакции Мутагены, мутагенез.часть С. С1 Р Аавв аавв; F АаВв, аавв 50% детей унаследуют хорею, а 50% будут

        23 здоровы по исследуемым признакам. Все дети гетерозиготны по гену фенилкетонурии. С2 Все вздорные члены семьи гетерозиготны Аа. Все мягкие по характеру члены семьи рецессивные гомозиготы Генетика и селекция.часть А. А1 1. А2 4. А3 2. А4 2. А5 3. А6 1. А7 2. А8 4. А9 3. Часть В. В1 А 2; Б 2; В 2; Г 1; Д 1; Е 1. Часть С. С1 При инбридинге повышается гомозиготность организма, благодаря чему закрепляются полезные качества родителей, но увеличивается и частота вредных или летальных рецессивных гомозигот. Полиплоидия направлена на преодоление бесплодия у гибридов, полученных в результате отдаленной гибридизации. У полиплоидных гибридов конъюгация хромосом и обмен генами происходит между хромосомами одного вида, что приводит к восстановлению плодовитости Биотехнология. Часть А. А1 2. А2 3. А3 1. Часть С. С1 Этот страх связан отчасти с непониманием того, что такое трансгенные продукты, отчасти обоснован. Трансгенные

        24 продукты это продукты, полученные из генномодифицированных растений или животных. Их получение связано с пересадкой определенного гена, взятого у бактерий. Пример: картофель устойчивый к колорадскому жуку, был создан путем введения в растения гена, выделенного из ДНК клетки почвенной тюрингской бациллы, вырабатывающий белок, ядовитый для колорадского жука. Использовали посредника клетки кишечной палочки. Листья картофеля стали вырабатывать белок, ядовитый для жуков. Опасность может заключаться в неожиданном действии белков, координируемых пересаженным геном на человека. Однако все возможные последствия пересадки генов тщательно проверяются в длительных экспериментах.

        docplayer.ru