Изменение циркадианного ритма под влиянием стресса

Глава 15. ИНТЕГРАТИВНАЯ ДЕЯТЕЛЬНОСТЬ МОЗГА ЧЕЛОВЕКА

Циркадианные ритмы у человека

Все или почти все виды деятельности человека связаны с временем суток, циклом бодрствование — сон. Температура тела на протяжении суток изменяется на 0,6—1,0 ° С (см. главу 11) и не зависит от того, спит или бодрствует человек. Температура тела зависит от активности человека и влияет на продолжительность сна. В наблюдениях в условиях длительной изоляции человека (проживание в пещере) со свободнотекущими ритмами отмечено, что если засыпание совпадает с минимальной температурой тела, то сон длится 8 ч; если человек засыпал при относительно высокой температуре тела, то длительность сна могла достигать 14 ч. В нормальных условиях люди с нормальным 24-часовым циклом бодрствование — сон обычно засыпают с понижением и просыпаются с подъемом температуры тела, не замечая этого. Суточный ритм температуры тела является очень прочным стереотипом, закрепленным в эволюционном развитии сменой дня и ночи, с характерными для них разной освещенностью, температурой окружающей среды, движением воздуха, геомагнитным воздействием и наконец различной активностью человека, который со времени существования вида Homo sapiens имел высокую активность в дневное время суток. Этим можно объяснить то, что со временем суток связана интенсивность основного обмена — он выше днем, чем ночью.

От времени суток зависят интенсивность мочеобразования и концентрация в крови регулирующих этот процесс гормонов. У здорового человека на дневное время приходится акрофаза экскреции воды, электролитов, продуктов азотистого обмена; на ночное время — экскреция аммиака и Н+. Клубочковая фильтрация днем выше, чем ночью, канальцевая реабсорбция воды выше ночью, чем днем. Акрофазы экскреции различных компонентов мочи несинхронны.

Не менее выражена циркадианная ритмичность деятельности сердечно-сосудистой системы. В ночное время снижаются частота сердечного ритма, артериальное и венозное давление.

В деятельности органов дыхания также выражены циркадианные изменения частоты и глубины дыхания, легочной вентиляции, объемов и емкостей легких с акрофазой в дневное время. При этом акрофазы сопротивления воздушному потоку в бронхах утром и вечером, а растяжимости легких наблюдают в 9 и 13 ч.

Характерные изменения претерпевает система крови: кроветворение в красном костном мозге наиболее интенсивно утром, селезенка и лимфатические узлы наиболее активны в 17— 20 ч. Максимальная концентрация гемоглобина в крови наблюдается с 11 до 13 ч, минимальная— в ночное время. Циркадианность характерна для числа эритроцитов и лейкоцитов в крови.

Минимальная СОЭ отмечается рано утром. С вечера в крови начинает уменьшаться содержание сывороточных белков. Характерную циркадианную динамику имеют содержание электролитов сыворотки крови, скорость свертывания крови. Следовательно, практически для всех показателей крови характерна циркадианная ритмичность.

Моторная и секреторная деятельность пищеварительного тракта натощак и после стимулирования приемом пищи существенно ниже в ночное, чем в дневное, время. Имеется циркадианная ритмичность резорбтивной активности пищеварительного тракта, пищеварительных и не пищеварительных функций печени.

Существенны циркадианные колебания концентрации гормонов в крови. Акрофаза для кортизола и пролактина приходится на 6 ч утра. В это время отмечается минимальная концентрация тиреотропного гормона. Акрофаза для инсулина отмечается около полудня, для ренина и самототропного гормона — в ночные часы, тестостерона — в ночные и утренние часы. Важно, что циркадианность характерна не только для секреции гормонов, но и реактивности к ним различных клеток и тканей.

Наличие циркадианной функциональной активности различных физиологических систем и органов рассматривается как один из диагностических критериев состояния здоровья, а нарушение циркадианной ритмичности в форме ее отсутствия или искажения — как показатель предпатологии и патологии. Например, у больных гипертонической болезнью акрофазы минутного и систолического объемов сердца и артериального давления передвинуты с дневного времени на ночное; выражена инверсия ритма уровня кетостероидов, возбудимости зрительных центров и ряда других функциональных показателей. У больных язвенной болезнью ночью не снижаются артериальное кровяное давление, уровень моторики и секреции желудка. Описано нарушение ритмичности экскреции с мочой ряда гормонов и электролитов при сахарном диабете.

Умственное и физическое утомление существенно изменяет ритмичность физиологических процессов. Это явление десинхроноза рассматривается как обязательный компонент стресса.

Существует точка зрения о биоритмологическом условном делении суток на три периода: первый — с 5 до 13 ч, когда преобладает влияние симпатической части автономной (вегетативной) нервной системы, усиливается обмен веществ, повышается работоспособность человека; второй период — с 13 до 21 ч, когда активность симпатической части понижается, постепенно уменьшается обмен веществ; третий период — ночной, когда повышен тонус парасимпатической части автономной нервной системы и значительно снижен обмен веществ.

Это деление условно по многим причинам, в частности потому, что выраженность ритмологических проявлений зависит от индивидуальных, в том числе типологических, особенностей человека, выработанного стереотипа времени сна и бодрствования и др. Специалисты, занимающиеся физиологией труда, считают, что максимальная работоспособность (и соответственно активность) существует в два временных периода: с 10 до 12 и с 16 до 18 ч, в 14 ч отмечен спад работоспособности, есть он и в вечернее время. Однако у большой группы людей (50 %) повышена работоспособность в утреннее время («жаворонки») или в вечернее и ночное время («совы»). Считается, что «жаворонков» больше в среде рабочих и служащих, а «сов» — среди представителей творческих профессий. Впрочем, есть мнение, что «жаворонки» и «совы» формируются в результате многолетнего, предпочтительно утреннего или вечернего, бдения. Во всяком случае эти особенности следует учитывать при индивидуализации режима труда, отдыха, приема пищи, что может повысить функциональную результативность.

Представляет интерес вопрос о том, как изменяются циркадианные ритмы человека в условиях добровольной изоляции от внешнего мира. Были проведены наблюдения за людьми, длительно (до полугода и более) находящимися в пещере и организующими свою активность и сон независимо от дня и ночи на поверхности Земли. У таких добровольцев в первые дни и недели оценка длительности суток могла укорачиваться (редко) и удлиняться (часто). При последующей изоляции «сутки» испытуемого стабильно удлинялись, приближаясь к 24,8-часовым «лунным суткам». В результате этого французский спелеолог Мишель Сиффр последний 179-й день своего пребывания в пещере оценил как 151-е сутки, считая каждые «сутки» за цикл бодрствование — сон.

В естественных условиях ритм физиологической активности человека синхронизирован с его социальной активностью, обычно высокой днем и низкой ночью. При перемещениях человека через временные пояса (особенно быстро на самолете через несколько временных поясов) наблюдается десинхронизация функций. Это проявляется в усталости, раздражительности, расстройстве сна, умственной и физической угнетенности; иногда наблюдаются расстройства пищеварения, изменения артериального давления. Эти ощущения и функциональные нарушения возникают в результате десинхронизации циркадианных закрепленных ритмов физиологических процессов с измененным временем световых суток (астрономических) и социальной активности в новом месте пребывания человека. Человек, покидая место своего постоянного или длительного жительства, как бы несет с собой на новое место ритм родных, прежних мест.

Через некоторое время эти ритмы согласуются, но для разных направлений перемещения человека и разных функций это время будет неодинаковым. При перелетах в западном направлении биологические часы отстают по отношению к 24-часовому солнечному циклу, и для приспособления к распорядку дня в новом месте должна произойти фазовая задержка биологических часов. При перелете в восточном направлении происходит их ускорение. Организму легче осуществить фазовую задержку, чем ускорение, поэтому после перелетов в западном направлении ритмы синхронизируются быстрее, чем при перелете в обратном направлении. Люди имеют существенные индивидуальные различия в скорости синхронизации ритмов при перемещениях. Скорость синхронизации прямо зависит от того, как скоро прилетевший на новое место человек включится в активную деятельность и сон по местному времени, насколько он в этом заинтересован.

Если поездка недлительная и предстоит скорое возвращение, то не стоит перестраивать на местное время свои биологические часы, так как предстоит их скорая возвратная «перенастройка». Это небезвредно для организма человека, если такие «перенастройки» частые, например у пилотов дальних авиалиний. Они предпочитают скорое возвращение и на новом месте недлительного пребывания биологические часы «не переводят на местное время».

Часто встречающимся видом десинхронизации биологического и социального ритмов активности является работа в вечернюю и ночную смену на предприятиях с круглосуточным режимом работы. Обычно рабочие и служащие этих предприятий работают одну неделю в утреннюю, вторую — в вечернюю и третью — в ночную смену. При переходе с одной смены на другую происходит десинхронизация биоритмов, и они не полностью восстанавливаются к следующей рабочей неделе, так как на перестройку биоритмов человека в среднем необходимо примерно 2 нед. У работников с напряженным трудом (например, авиадиспетчеры, авиапилоты, водители ночного транспорта) и переменной сменностью работы нередко наблюдается временная дезадаптация — десинхроноз. У этих людей нередко отмечаются различные виды патологии, связанные со стрессом, — язвенная болезнь, гипертония, неврозы. Это плата за нарушение циркадианных биоритмов. Существуют методы индивидуальной профилактики и коррекции десинхроноза.

Исследования связи эндогенных биоритмов с экзогенными датчиками ритмов в изолирующих человека от внешней среды камерах показали возможность «укоротить» сутки до 18 ч, постепенно изменяя продолжительность фаз сна и бодрствования. Попытка «сжать» сутки до 16 ч оказалась безуспешной, и у испытуемых проявлялись различные, в основном психические, расстройства.

«Удлинение» суток в условиях камеры испытуемыми переносилось несколько легче и функциональные расстройства у них отмечались при навязывании «суток» длительностью 40 ч и более.

Существенная зависимость функционального состояния человека от времени суток дает объяснение многим явлениям, в том числе преимущественной приуроченности приступов астмы и стенокардии, смерти к ночному времени.

Показаны циркадианные изменения реактивности организма человека, его органов и систем по отношению к токсинам и ряду фармакологических веществ. Описаны хронофармакологические эффекты гистамина, ацетилхолина, простагландинов, этанола, инсулина, АКТГ и ряда других эндогенных и экзогенных веществ. Это явление нашло применение в практической медицине при использовании разных дозировок препаратов в дневное и ночное время. Например, для большинства гипотензивных средств наиболее эффективен прием в 15—17 ч, когда начинается циркадианный подъем АД у больных гипертонической болезнью (максимум АД отмечается в 18—20 ч). Максимум реакции на введение гистамина отмечается от 21 ч 45 мин до 00 ч 50 мин с акрофазой в 23 ч 30 мин, поэтому антигистминные препараты рекомендуется вводить в 19—20 ч. Нашли объяснение различия результатов хирургических операций, выполненных в разное время суток. Такие примеры многочисленны и рассматриваются в соответствующих разделах медицины с учетом все обновляющихся клинических и экспериментальных данных ритмо-(хроно-) патологии.

lechebnik.info

Адаптация и циркадные ритмы

Глава 1. Спортивная нагрузка и основные ее составляющие…………………5

1.1 Определение понятия «спортивная нагрузка» и ряда смежных терминов………………………………………………………………………….5

1.2. Функциональная нагрузка и ее особенности………………………………7

Глава 2. Адаптивные физиологические ритмы………………………………..10

Глава 3. Адаптационные возможности организма под влиянием физических упражнений………………………………………………………………………15

3.1. Виды и механизм адаптации……………………………………………….15

3.1.2. Срочная и долговременная адаптация…………………………………..18

3.2. Физиологические изменения в организме под влиянием физических нагрузок………………………………………………………………………….19

3.2.1. Железы внутренней секреции……………………………………………20

3.2.2. Физиологические изменения в нервной системе……………………….21

3.2.3. Физиологические изменения в сердечно-сосудистой системе………. 22

Список использованных источников……………………….………………….25

Образовательный уровень тренера сегодня не может ограничиваться исключительно педагогическими знаниями, тем более что объектом его деятельности является человек в своем сложном взаимоотношении со средой. Следует понимать, что единственное, на чем может базироваться теория спортивной тренировки, — это законы физиологии, которые, как и другие человеческие знания, подвержены эволюции. Ситуация, сложившаяся в спортивной педагогике, по-своему уникальна: искусственно созданные теории безапелляционно принимаются практиками и тиражируются вне зависимости от приносимых ими результатов. Вместе с тем изменившаяся в стране экономическая ситуация сегодня уже не позволяет тренеру «перемалывать» огромное количество «материала» в надежде, что какой-нибудь суперталант сможет подняться на вершину спортивного Олимпа не благодаря, а вопреки применяемым методикам спортивной тренировки.

Термин «адаптация» принято понимать как процесс или свершившийся факт приспособления к чему-либо, причем свершившийся факт адаптации тот же автор в своей монографии характеризует всего лишь как «эффект количественного накопления определенных изменений».

Адаптация организма к постоянно изменяющимся условиям cреды (внешним и внутренним) — безостановочно происходящий процесс приспособления организма к данным изменениям, призванный сохранять в нем гомеостатическое равновесие. Физиологический смысл адаптации организма к внешним и внутренним воздействиям заключается именно в поддержании гомеостаза и, соответственно, жизнеспособности организма практически в любых условиях, на которые он в состоянии адекватно реагировать.

Абсолютная адаптированность организма к чему-либо — относительно нестабильное функциональное состояние, которое может быть достигнуто только при длительном — в течение адаптационного периода — действии на него достаточно неизменного по силе и продолжительности стандартного раздражителя или суммы раздражителей.

Адаптационные изменения (более или менее выраженные) происходят в организме в ответ практически на любые изменения его внешней и внутренней среды. Спортивная тренировка фактически является изменением условий существования организма спортсмена, призванным добиться в нем определенных спецификой спорта адаптационных изменений.

Адаптационные изменения могут носить и негативный или относительно негативный характер, в том числе и в случаях, когда речь идет о спорте. Так, увеличение процента содержания медленных волокон в мышцах спринтера вследствие избыточного применения в тренировках нагрузок аэробной направленности может расцениваться как негативный эффект адаптационных изменений в ответ на данные нагрузки.

Цель: охарактеризовать адаптационные возможности организма при физических нагрузках.

Рассмотреть понятие нагрузки и ее составляющие;

Изучить физиологические ритмы человека.

Изучить именения происходящие в организме под влиянием физической нагрузки

Объект: физиологические изменения происходящие в организме при адаптации к физическим нагрузкам.

Предмет: частота сердечных сокращений и артериального давления при различных нагрузках.

Глава 1. Спортивная нагрузка и основные ее составляющие


Определение понятия «спортивная нагрузка» и ряда смежных терминов

Профессор Л. П. Матвеев (1977, 1976) под нагрузкой (тренировочной) подразумевает определенную величину воздействия физических упражнений на функциональное состояние, организма спортсмена. Нагрузка, по мнению автора, может быть выражена «внеш­ней» и «внутренней» сторонами. К «внешней» нагрузке автор относит количественные и ка­чественные показатели выполняемых физиче­ских упражнений (в мерах преодолеваемого расстояния, затраченного времени, поднятого веса, числа повторений и т. д.). «Внутреннюю» сторону нагрузки, автор характеризует вели­чиной ответных реакций организма, т. е. сте­пенью физиологических и биохимических сдвигов в организме под влиянием данного уп­ражнения (или упражнений).

Несмотря на то, что определение Л. П. Матвеева было дано в 1967 году, оно сохра­нило свое смысловое содержание до сегодняш­него дня и включено с небольшими поправ­ками в учебники теории и методики физического воспитания.

Эту же мысль позднее подчеркивал а своей работе и В. Н. Афанасьев (1976), отно­ся объем, интенсивность, плотность работы к внешней сторону нагрузки, а реакцию функ­циональных систем к внутренней стороне нагрузки.

А. Д. Солдатов, К. Д. Чернов (1978), раскрывая содержательную сторону термина «нагрузка», попытались раскрыть ее через количественные характеристики спортивной деятельности и состояния спортсмена, ука­зав на причинно-следственную зависимость между ними.

По мнению И. Ю. Бондарчука (1988), под нагрузкой понимается прежде всего ко­личественная мера воздействия физических упражнений, сопряженная с «расходованием рабочих потенциалов» организма.

Брейзер В. В. в соавт. (1988), В. П. Фи­лип, В. С. Рубин (1988) и др. рассматрива­ют нагрузку и предлагают планировать ее, учитывая лишь один из параметров — это количество тренировочных дней или объем выполненной работы (будь то общая или спе­циальная физическая подготовка) и уровень тренированности (Н. П. Гусев, Ю. Н. Лысен­ко, 1989).

Мы склонны «внешнюю» нагрузку харак­теризовать как физическую, а «внутреннюю» называть функциональной нагрузкой.

Что касается понятия функциональная (нагрузка, то хотя этот термин очень часто употребляется в спортивной литературе, особенно в практике спорта высших достиже­ний, однако не удалось обнаружить его определения.

Наиболее часто употребляемые в теории и практике спорта понятия «тренировочная» и «спортивная» нагрузки также до сих пор имеют самые различные толкования.

Анализируя определение, данное Л. П. Матвеевым, можно отметить, что содержание, которое автор вкладывает в понятие «трени­ровочная нагрузка», значительно, шире, а сле­довательно и сам термин неадекватен содер­жанию, заключенному в этом определении. Термин, который смог бы наиболее полно от­разить содержание, вкладываемое в понятие «тренировочная нагрузка» — это, по моему мнению, «спортивная нагрузка».

Таким образом, предлагая заменить тер­мин «тренировочная нагрузка» на «спортив­ная нагрузка», можно дать определение последнему.

Спортивная нагрузка — это интегративное единство физической нагрузки и нагруз­ки функциональной, имеющей место при вы­полнении различных двигательных. действий спортсмена, связанных с выполнением кон­кретных физических упражнений. Вводимый здесь термин «спортивная нагрузка» харак­теризует нагрузку, которая характерна отра­жает двигательную деятельность. Что касает­ся других типов деятельности, то имеющая там место нагрузка будет, по-видимому, называться, в зависимости от вида деятельности, технико-конструкторской, научно-теоретиче­ской, художественно-эстетической, наряду с этим можно вычленить учебную и производ­ственную (трудовую) нагрузки. Однако, несмотря на различные виды деятельности, ос­новные составляющие компоненты нагрузки в принципе идентичны компонентам спортив­ной нагрузки.

Анализ приведенного выше определения спортивной нагрузки обнаруживает его двой­ственную природу, которая по определению Л. П. Матвеева имеет «внутреннюю» и «внеш­нюю» стороны. Отсюда следует, что спортив­ную нагрузку можно и нужно подразделять на два ее вида: физическую — «внешнюю» и функциональную — «внутреннюю», которые хотя и взаимосвязаны, но диаметрально про­тивоположны.

Термин «физическая на­грузка» более точно отражает ее смысловое содержание, нежели понятие «внешняя» нагрузка. Поэтому под физической нагрузкой следует понимать некую величину выполненной спортсменом определенным способом (методом) физической работы, выраженной в динамических, пространственных и временных ха­рактеристиках.

1.2. Функциональная нагрузка и ее особенности

Под функциональной нагрузкой мы будем понимать интегральную величину, отражающую психофизиологические, соматофизиологические, биохимические и прочие сдвиги, которые обуславливают повы­шенный уровень функцоинирования систем ор­ганизма, а также определенные величины раз­личных энергозатрат, которые чаше всего выра­жаются термином «рабочие потенциалы». Причем особый акцент следует сделать на неразрывности существования физической и функциональной нагрузок. Может быть поэ­тому физическую и функциональную нагруз­ки можно сравнить с двумя сторонами меда­ли. Такое сравнение подчеркивает, что одна сторона без другой существовать не может, ибо в этом случае нарушится целостность данного явления; поэтому и существование любой из этих сторон в отдельности невоз­можно. Таким образом, не может быть функциональной нагрузки без физической, и в то же время наличие физической нагрузки всег­да обуславливает нагрузку функциональную. Причем, эта обусловленность носит количест­венно-качественную взаимосвязь. Следователь­но, по величине функциональных сдвигов в организме можно относительно судить о ве­личине физической нагрузки. Здесь говорится относительно, потому что, как отмечают спе­циалисты в области физиологии спорта, одна и та же величина физической нагрузки всег­да сопровождается одними и теми же вели­чинами функциональных сдвигов при одном и том же исходном состоянии организма, а при различном исходном состоянии организ­ма одни и те же физические нагрузки вызы­вают неадекватные по величине функциональ­ные сдвиги в организме.

Таким образом, кратко охарактеризовав физическую и функциональную нагрузки, можно отметить, что «спортивная нагрузка» включает в себя определенную интегративную величину выполненной работы — «физи­ческую нагрузку» — и сопутствующие ей интегративные сдвиги в организме — «функцио­нальную нагрузку».

Нельзя отрицать и того, что процесс фи­зической подготовки, по существу своему, есть единство двух существенно различных хотя и взаимосвязанных процессов, а именно: трени­ровочного — как процесса накопления необходимых двигательных навыков и умений, а также сдвигов в организме, и соревнователь­ного — как процесса трансформации накопленных двигательных умений и навыков, а также положительных сдвигов в организме спортсмена с целью реализации их в макси­мально возможный спортивный результат, осуществляемый, как правило, лишь в процес­се спортивных соревнований. Поэтому физи­ческая нагрузка в свою очередь может быть подразделена на две разновидности: трениро­вочную и соревновательную. Что касается функциональной нагрузки, то, в силу своей специфики, она непосредственно не может быть подразделена на две выше названные разновидности, но всецело обуславливается либо спецификой (характером, величиной и прочее) тренировочной физической нагрузки, либо спецификой (характером, величиной и прочее) соревновательной физической на­грузки.

works.doklad.ru

Изменение циркадианного ритма под влиянием стресса

В настоящее время, только глухой не услышит рассуждений о влияние магнитных бурь на здоровье человека, но и он найдет массу публикаций на эту тему. И все они, за исключением чисто научных сообщений, негативно оценивают воздействие магнитной бури на организм человека. Так ли это?

Земля, как планета и человек, проживающий, на ней являются, участниками вселенской карусели с парадными построениями планет, определяющими процессы на небезразличной для нас звезде под названием Солнце. Миллионы лет до нашей планеты и тысячи лет до нас доходит информация из Вселенной, которую мы не можем понять силой своего разума. Астрологи древних цивилизаций смогли определить строгую последовательность движения планет и зависимых от этого изменений на Земле. Так видимо родилось наше представление о времени, цикличность которого не могла быть не замечена. Цикличность Космических событий можно выделить как первооснову Земной жизни. И в этой жизни циклы активности Солнца занимают особое место.

Хорошо известно, что в основе многих восточных религий лежит двенадцатилетний событийный цикл. Не трудно предположить, что такая периодичность могла быть определена одиннадцатилетним циклом Солнечной активности (одиннадцать лет – это усредненное значение за сотни лет измерений, при разбросе от 7 до 17 лет).

С такой периодичностью связано множество процессов на Земле: извержение вулканов, наводнения, техногенные катастрофы, изменения социально-политических формаций, уровня смертности и рождаемости, динамики инфекционных заболеваний, урожайности и многие другие. Не трудно предположить, что одиннадцатилетние циклы Солнечной активности наиболее значимы для жизни человека, длительность которой ограничена 6-9 циклами.

Исследования дат рождения и смерти людей в сопоставлении с 11-летним ритмом солнечной активности, показывают, что в большинстве случаев, если рождение человека приходится на период, близкий к максимуму солнечной активности в 11-летнем цикле, то его естественная смерть (в 67% случаев) наступает в период солнечной минимальной активности. И напротив, если человек родился в период, близкий к минимуму солнечной активности, его естественная смерть приходится на период, связанный с максимумом солнечной активности. [1]

Существует такое понятие как космобиосферный импринтинг, т.е. в момент рождения ребенка происходит запечатление конкретного сочетания физических, магнитных и других полей, воздействующих на него. Осуществляется подстройка организма рожденного ребенка к новой среде обитания, к конкретным космобиосферным условиям и устанавливается ход собственных биологических часов. В дальнейшем при изменении солнечной активности в рамках одиннадцатилетнего цикла солнечной активности организм вынужден функционировать с большими затратами и напряжением. Особенно это касается периода противофазы цикла. С возрастом, когда гелиофизические условия значительно отличаются от существовавших в момент рождения эффективность срабатывания механизмов адаптации снижается и возникает некомпенсированное нарушение механизмов внутренней регуляции. Это приводит к нарушению функционирования организма, его отдельных подсистем и органов, что влечет за собой заболевания и, в конечном счете, в одном из циклов приводит к смерти.

Организм упрощенно можно представить как набор функционально и пространственно выделенных осцилляторов; частоты излучения и биоритмы являются собственными частотами системы. Есть основания считать, что высокочастотная область биоэффективных частот (

ГГц) обусловлена преимущественно вынужденным резонансом микромасштабных структур организма (ионы, аминокислоты, мембраны и т.п.), а низкочастотная (ОНЧ-УНЧ диапазон) – параметрическим резонансом крупномасштабных систем (сердце, мозг, кровеносная система и т.п.). Биоэффективные частоты определяются собственными частотами соответствующих систем организма и могут быть вычислены при знании масштабных факторов и характерных скоростей в рассматриваемой системе[2]

При воздействии гелиогеомагнитных флуктуаций среди органов мишеней наиболее часто называют сердце [3-10]

Проведение анализа влияния на сердечно-сосудистую систему всех возможных видов геомагнитных возмущений, генерированных солнечной активностью, то есть “сбоев биологических часов”. Анализ диагнозов, поставленных врачами “Скорой помощи” г. Москвы (всего 6 304 032 случая, включая инфаркты миокарда, гипертонические кризы, внезапную смерть, аритмии, автомобильные аварии) позволил выявить достоверную связь между ритмом среднесуточных чисел случаев инфаркта миокарда и ритмом межпланетного магнитного поля. Полученные клинические результаты были сопоставлены с различными характеристиками геомагнитного поля и межпланетной среды. Результаты анализа свидетельствовали, что во время очень сильных геомагнитных бурь в структуре вызовов “Скорой помощи” в Москве число инфарктов миокарда возрастало на 13%, а инсультов – на 7%.[11]

Прежде, чем перейти к анализу геомагнитных влияний на человека, необходимо вернуться к критике самой возможности долгосрочного прогнозирования магнитных бурь т.к. в силу объективных причин перспективный анализ о начале бури возможен не раньше, чем за день или два до её начала. Все остальные долгосрочные прогнозы (данные на месяц и более длительные сроки) приводят к тому, что человек сам настраивается на событие, которого не будет. В результате этого люди чувствуют себя хуже, тогда как, ожидаемой магнитной бури нет, и бездействуют во время ее возникновения. Чтобы избежать шарлатанства «предсказателей», рекомендуем использовать данные Центра прогнозов геофизической обстановки при ИЗМИРАНе.

О.В. Хабарова и Е.А. Редечник [2004] отмечают, что прогноз магнитных бурь – важная задача физики солнечно-земных связей. Между тем, оправдываемость среднесрочных прогнозов до сих пор остается неудовлетворительной, снижаясь до 30% в годы минимума 11-ти летнего цикла солнечной активности. Отчасти это связано с тем, что на данный момент большинство методик среднесрочного прогноза ориентировано на анализ солнечных данных, слежение за активными областями и прогнозирование бурь, являющихся следствием активных процессов на Солнце. Но в годы минимума солнечной активности преобладают рекуррентные потоки и потоки смешанной природы, слежение за которыми затруднено. [12]

Частота является носителем информации, а виды колебаний в организме могут трансформироваться друг в друга. Поэтому можно полагать, что резонансный отклик организма возможен на одних и тех же частотах при различных типах воздействия на него (электромагнитных, акустических и т.п.). Реакция биообъектов на магнитные бури, а также существование эффекта Чижевского-Вельховера могут объясняться параметрическим резонансным откликом важнейших органов и систем организма (мозга и эндокринной системы) на усиление длиннопериодных колебаний магнитного поля Земли, как во время бурь, так и в некоторых случаях — до них. Причиной появления предбуревых длиннопериодных (2-250 мин) осцилляций геомагнитного поля является смена осцилляторного режима солнечного ветра за несколько дней до прихода геоэффективных потоков солнечного ветра к Земле. [2]

Ю.И.Гурфинкелем (2004) проводились клинические исследования пациентов с тяжелыми заболеваниями сердечно-сосудистой системы в дни геомагнитных бурь. Для контроля геомагнитной обстановки в клинике был установлен магнитометр, позволяющий проводить непрерывную регистрацию изменений геомагнитного поля. Показания магнитометра в последующем дублировались с помощью данных Магнитной обсерватории Москвы и анализа специальных бюллетеней, содержащих мировые данные по индексам геомагнитной и солнечной активности. У пациентов ИБС в общей сложности проведено 85 суточных записей ЭКГ по Холтеру в спокойной и возмущенной геомагнитной обстановке. Нарушения сердечного ритма во время геомагнитных возмущений зарегистрированы у 22 пациентов. Небольшие сдвиги в показателях отмечены у 8 человек. Значимые изменения у 9, значительные сдвиги показателей у 7 человек. Эпизоды депрессии сегмента ST, свидетельствующие об ишемии миокарда во время геомагнитных возмущений, отмечены у 11 человек. У трех из них количество эпизодов было небольшим (не превышало 3-х эпизодов за сутки наблюдения во время геомагнитных возмущений), еще у 5 количество эпизодов депрессии ST было более 5 за сутки наблюдения. Особый интерес вызывают сопоставление почасового протокола 24-часовой ЭКГ у пациентов с ИБС с почасовыми изменениями геомагнитного поля во время магнитных бурь или выраженных всплесков геомагнитной активности. [13]

Обобщая результаты мониторингового эксперимента М.И.Рагульская (2004) отмечает, что в магнитовозмущенные дни у большинства обследуемых наблюдается: аритмия; 2-3-кратное возрастание коэффициента симметрии Т-зубца после проведения стресс-теста; изменение динамики выхода из состояния недозируемой физической нагрузки; централизация управления организмом.

Наиболее подверженными влиянию магнитных бурь оказываются мужчины, женщины демонстрируют преобладание эндогенных ритмов. [14]

После этого вступления вернемся к нашему вопросу о влиянии магнитных бурь на биологические системы. Конечно, влияют. Продемонстрируем это на наших собственных экспериментальных исследованиях. Изучение биологических ритмов сердечно-сосудистой системы проводилось через каждые три часа в течение многих суток. На 600 кроликах исследовалась динамика изменений сотен показателей, обеспечивающих работу сердца. Математический анализ биоритмов сердца показал, что между суточными изменениями изучаемых показателей существуют определенные временные закономерности. Исключение составляли данные одного эксперимента, когда в течение трех суток биоритмы сердца были резко нарушены. Пытаясь объяснить эти нарушения, мы обратились за помощью к биофизикам, изучающим космическую погоду. Выяснилось, что в период данного эксперимента была зафиксирована большая магнитная буря, которая и явилась причиной нарушений биоритмов сердечно-сосудистой системы. Безусловная ценность наших исследований в том, что эксперименты проводились абсолютно в одинаковых условиях, одними и теми же сотрудниками и их задачей не являлось изучение влияний космобиосферных факторов на животных. Так случай помог определить один из механизмов влияния магнитной бури, который выразился в нарушении биологических ритмов организма, вплоть до их исчезновения.

Методика исследования.

Биологический эксперимент проводили на 240 кроликах-самцах породы “шиншилла” массой 2600-3500 г, содержавшихся на стандартном рационе вивария, в магнитоспокойные сутки и в период фазы восстановления умеренной геомагнитной бури С1, в начальной фазе следующей за ней сильной бури А2, во время главной фазы большой планетарной бури В2 и в первые часы фазы восстановления С2 последней. Увеличение характеристик геомагнитного поля А2 было зарегистрировано в 20 часов через сутки после начала эксперимента, активный период этой сильной бури — в 13 часов следующего дня, а пик главной фазы В2 — в 17 часов. Данные о состоянии электромагнитного поля Земли получены по его измерениям в магнитной обсерватории ИЗМИРАН. В течение трех суток эксперимента с интервалом в 3 часа у животных (n=5), проводили исследование КОС крови и систолического (диастолического) артериального давления (САС и ДАД соответственно).В полости левого желудочка сердца после пятисекундной окклюзии аорты регистрировалось пиковое систолическое давление (SBP-LV). Тотже показатель, но с пережатием легочной артерии определялся для правого желудочка (SBP-RV), исследовали кардиомиоциты левого желудочка (ЛЖ) и правого желудочка (ПЖ) методом электронной трансмиссионной микроскопии на микроскопах “JEM-100C”при увеличении в 6000 и 20000 раз.

Результаты исследования.

Сравнение спектров КОС в магнитоспокойные сутки показало высокое сходство ритмических структур APH, AHCO3, ATCO2, ABEE, ABEIN, ABC, AHB, VHCO3, VTCO, VBEE, VBEIN, VBC,VHB, САС и ДАД. Все эти показатели имели основные максимумы от 03 до 06 ч в циркадианном диапазоне (длительность периода 22-24 ч.) Выявлены также периоды, близкие ко второй гармонике (10-11 ч). Для многих показателей максимумы спектров, найденные при линейном косинор- анализе, были подтверждены методом нелинейного косинора.

Спектры напряжения кислорода и углекислого газа в артериальной и венозной крови, а также артерио-венозной разности напряжения кислорода, помимо циркадианного пика, имели максимумы в области 16 часов, т.е. ультрадианный ритм.

В магнитоспокойные сутки спектральные характеристики систолического и диастолического артериального давления у кроликов практически совпадали. Они характеризовались четким суточным компонентом (период 24 ч) и значительно менее выраженными ультрадианными компонентами (12-13 ч в обоих спектрах и 8 ч в спектре САД)

Косинор-анализ выявил значительные различия суточных ритмов исследованных физиологических показателей в разные сезоны года. Как правило, в магнитоспокойные сутки циркадианные ритмы были хорошо выражены, а в магнитовозмущенные сутки они или отсутствовали, или были «сглажены», «размыты», что хорошо видно на приведенных ниже рисунках. Особенно ярко эти различия проявлялись у показателей АД (рис.1 и 2). В то же время, ряд показателей сохранял суточную ритмичность в оба сезона; отмечалась лишь смена акрофаз суточных ритмов – это характерно для SBP-LV и SBP-RV (рис.3 и 4).

Рисунок 1. Результаты косинор-анализа 24-ч ритма САД в магнитоспокойные (а, в) и в магнитовозмущенные сутки (б, г).

Рисунок 2. Результаты косинор-анализа 24-ч ритма ДАД в магнитоспокойные (а) и в магнитовозмущенные сутки (б)

В магнитовозмущенные сутки обнаружены похожие ритмические структуры для AHCO3, ATCO2, ABEE, ABEIN, ABC, VHCO3, VTCO, VBEE, VBEIN и VBC. В их спектрах обнаружено несколько максимумов в ультрадианном диапазоне (с периодами 7, 9, 12-13 и 16 ч). Циркадианная ритмичность была «размазана» -отмечался широкий максимум спектральной плотности, который не укладывался в границы циркадианного диапазона. Согласно результатам нелинейного косинора, верхняя граница доверительного интервала достигала 36-37 ч. Спектры напряжения кислорода и углекислого газа, а также PH в артериальной и венозной крови, значительно отличались от таковых в магнитоспокойные сутки. В них была максимально выражена ультрадианная составляющая. Ультрадианная ритмика характерна для показателей артериального давления.

Увеличение геомагнитной активности приводит к значительным изменениям ультраструктуры кардиомиоцитов. В период фазы С1 ультраструктура Мх принципиально не отличалась от ультраструктуры Мх кардиомиоцитов, исследованных при нормальных геомагнитных условиях. Мх были равномерно распределены по клетке, иногда наблюдались их скопления в околоядерной зоне. Отмечались явления полиморфизма, небольшого набухания органелл, четкая двухконтурность наружной оболочки большинства Мх. У части Мх было выявлено утолщение наружных мембран с явлениями разрушения. Кристы плотные, частью фрагментированные. Матрикс большинства Мх плотный, но в некоторых органеллах наблюдалось его просветление. Корреляционный анализ между показателями сократительной силы ЛЖ и ПЖ сердца и объемом Мх показывает, что между ними существует положительная достоверная связь (коэффициент корреляции (r) +0,76 и +0,81; р m , где b = 218; m = 0,05 для ЛЖ и b = 24,6; m = 9,55 для ПЖ.

В начальной фазе бури (А2) были отмечены значительные изменения ультраструктуры миокарда. Клеточная мембрана кардиомиоцитов была разрыхлена, имелись явления нарушения целостности ее наружного листка. Появилось большое количество аркад, заполненных Мх. Выражены явления межклеточного отека. В цитоплазме наблюдались единичные исчерченные липидные включения. Мембрана клеточных ядер в подавляющем большинстве инвагинирована. Отмечались явления маргинации хроматина, а в некоторых ядрах очаги его вымывания. Капилляры имели утолщенную стенку, в некоторых случаях окруженную коллагеновой муфтой. Количество лизосом было выше, чем в предыдущие сутки. В миофибриллах наблюдались массированные очаги гомогенизации. Вставочные диски утолщены, границы их расплывчаты. Миофибриллы отечны, волокнисты. Большинство из них имели участки разрывов и расплавления, что является, как и инвагинация ядерной мембраны, характерной чертой именно для этой фазы. Большинство Мх находились в состоянии значительного набухания с явлениями нарушения наружного листка мембраны. В Мх наблюдались явления вакуолизации матрикса. Многие Мх находились в состоянии деструкции и деградации. Кристы сильно фрагментированы, их количество в одной средней Мх или их суммарное количество в средней электронограмме было в 2 раза меньше, чем в фазе восстановления. КЭЭММХ снизился в 2 раза (с 3,9±0,8 до 1,9±0,2). Набухание Мх, фрагментация крист, уменьшение их количества, вакуолизация матрикса, деструкция и деградация Мх — это характерные черты для начальной фазы бури. Объем Мх становится намного больше, чем в С1, и между объемом Мх и показателем сократительной силы ЛЖ и ПЖ сердца характер корреляционной связи резко изменился. Связь стала отрицательной, сохраняя силу и достоверность (r -0,73 и -0,81 соответственно), что свидетельствует о дальнейшем увеличении объема органелл и падении сократительной силы сердца. В эксперименте установлено, что амплитуда суточных колебаний сократительной силы сердца значительно ниже в период геомагнитных возмущений (таблица 1). Из табл. видно, что циркадианная ритмика у кроликов во время бури имеет гораздо меньшую степень выраженности (PR), чем в магнитоспокойные сутки. Более детальный анализ амплитудных изменений в зависимости от фаз геомагнитной бури показал следующее. В период предшествующий большой планетарной магнитной буре (21.09.84.) отмечались наивысшие значения амплитуды циркадианного ритма сократительной силы сердца (2А±SE для SBP-LV=45.6±10.4; для SBP-RV=15.4±4.0), которая прогрессивно снижалась по мере нарастания возмущенности магнитного поля Земли (2А±SE для SBP-LV=7,4±13.7; для SBP-RV=2.6±3.2) (рис.1, 2).

Заключение. Таким образом, в магнитоспокойные сутки в спектрах гемодинамических переменных, как и спектрах показателей КОС, доминировали циркадианные компоненты; наряду с ними также выявлялись ультрадианные составляющие- близкие ко вторым гармоникам циркадианного ритма. Увеличение геомагнитной активности приводит к значительным изменениям хроноструктуры ритмов КОС. Выявлено, что в период магнитных бурь возникают явления десинхроноза.

Таблица 1. Циркадианные ритмы показателя пикового систолического давления (SBP) в левом (LV)и в правом (RV)

желудочках сердца кроликовво время спокойных геомагнитных условий и во время геомагнитных бурь.

science-education.ru